If ${A_\lambda } = \left( {\begin{array}{*{20}{c}}
\lambda &{\lambda  - 1}\\
{\lambda  - 1}&\lambda 
\end{array}} \right);\,\lambda  \in N$ then $|A_1| + |A_2| + ..... + |A_{300}|$ is equal to

  • A

    $(299)^2$

  • B

    $(300)^2$

  • C

    $(301)^2$

  • D

    None of these

Similar Questions

The value of a for which the system of equations ; $a^3x + (a +1)^3 y + (a + 2)^3 \, z = 0$ ,$ax + (a + 1) y + (a + 2)\, z = 0$ & $x + y + z = 0$ has a non-zero solution is :

$\left| {\,\begin{array}{*{20}{c}}{1/a}&1&{bc}\\{1/b}&1&{ca}\\{1/c}&1&{ab}\end{array}\,} \right| = $

If $D = \left| {\,\begin{array}{*{20}{c}}1&1&1\\1&{1 + x}&1\\1&1&{1 + y}\end{array}\,} \right|$ for $x \ne 0,y \ne 0$ then $D$ is

  • [AIEEE 2007]

The value of $k \in R$, for which the following system of linear equations

$3 x-y+4 z=3$

$x+2 y-3 x=-2$

$6 x+5 y+k z=-3$

has infinitely many solutions, is:

  • [JEE MAIN 2021]

If the system of linear equations $x + ky + 3z = 0;3x + ky - 2z = 0$ ; $2x + 4y - 3z = 0$  has a non-zero solution $\left( {x,y,z} \right)$ then $\frac{{xz}}{{{y^2}}} = $. . . . .

  • [JEE MAIN 2018]